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In the title compound, [Rh(C9H6NO)(C24H27O3P)(CO)], the

molecules pack in a tail-to-tail fashion, with a �–� stacking

distance of 3.76 (6) Å, due to the steric effect of the phosphite

ligand. The effective cone angle (�E) for the phosphite ligand

is 183�.

Comment

Previous work has been carried out on rhodium–phosphine

complexes containing the bidentate ligand OX (OX = oxinate,

8-hydroxyquinolinate in the present study), illustrating the

catalytic importance of the rhodium(I) square-planar moiety

(Roth et al., 1971). In this type of complex, starting with the

[Rh(OX)(CO)2] complexes, the different donor atoms of the

bidentate ligand (OX) result in the displacement of the

carbonyl group trans to the stronger donor (less electro-

negative) atom. This opens the possibility of determining the

relative trans influence of the donor atoms. In 8-hydroxy-

quinoline, the N atom has a larger trans influence, due to its

better �-electron donor capability, compared with that of the

O atom. This results in carbonyl displacement trans to the N

atom, as shown by Leipoldt et al. (1981).

The title compound, (I), reported here forms part of our

study of complexes of the type [Rh(OX)(CO)(ER3)], where E

= P, As or Sb, and R = alkyl, aryl, alkoyl or aroyl. The Rh atom

lies on a general position and is slightly displaced out of the

coordination plane (Fig. 1, Table 1) by 0.039 (1) Å. In the five-

membered chelate ring, the oxinate ligand has a small bite

angle of 80.34 (13)� and a C10—Rh—P bond angle of

90.31 (13)�. This illustrates the distorted square-planar metal

coordination polyhedron. There is a slight distortion in the

oxinate ligand, with a dihedral angle of 1.5 (2)� between the

two aromatic rings. There is further distortion observed

between the bidentate oxinate backbone and the metal coor-

dination plane, with a dihedral angle of 6.3 (1)�.

The molecules of (I) pack in a tail-to-tail fashion, with a �–�
stacking distance of 3.76 (6) Å (Fig. 2). This tail-to-tail

stacking is not a result of metal–metal interactions [Rh� � �Rh =
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7.0 (1) Å], but is due to the steric effect of the phosphite

ligand.

The steric behaviour of the ligand at the metal centre was

determined by calculating the cone angle, as described

previously by Tolman (1977) and Otto et al. (2000). For the

current structure, the actual Rh—P bond distance

[2.1982 (13) Å] was used, yielding the effective cone angle �E.

The substituents of the phosphite may have different orien-

tations, resulting in variations in solid-state cone angles, as

observed by Ferguson et al. (1978), and may therefore not

necessarily be a true indication of the steric properties of the

phosphite in solution compared with the solid state. The

benzene rings of the tris(2,6-dimethylphenyl)phosphite ligand

are arranged in such a way as to give an effective cone angle

�E = 183�, which is comparable with that reported by Meij-

boom et al. (2004) for the corresponding Vaska-type rhodium

complex.

Bond distances, bite angles and the effective cone angle for

(I) are compared with those of similar structures in Table 2.

The steric contribution of the methyl groups on the phenyl

ring of the tris(2,6-dimethylphenyl)phosphite ligand is clearly

illustrated by the 30� increase in the size of the cone angle

compared with that for the triphenylphosphine and the

triphenylphosphite ligand complexes. A reasonable correla-

tion between the bond distances and angles for the quinoline

rings is observed. The shorter Rh—P bonds for the phosphite

complexes are a result of the phosphite being a weaker �
donor but a better � acceptor than the phosphine ligand,

leading to a stronger bond.

The comparable 1J(Rh—P) values of the triphenylphosphite

and tris(2,6-dimethylphenyl)phosphite complexes are indica-

tions that the methyl groups on the benzene ring have little or

no electronic influence. The significant difference in coupling

constants between phosphine and phosphite complexes (161

versus ca 280 Hz, respectively) is assumed to be due to the �-

accepting nature of phosphites, leading to a corresponding

significant shortening of the Rh—P bond (ca 2.26 versus

2.19 Å, respectively). The additional increase from entry 3 to

entry 4 is due to the change from RhI to RhIII following CH3I

oxidative addition.

Experimental

[RhCl(CO)2]2 was prepared according to the literature method of

McCleverty & Wilkinson (1990). P(OC8H9)3 was prepared by reac-

tion of the corresponding tris(2,6-dimethylphenyl)phenol with PCl3
in the presence of NEt3, similar to the synthesis of tris(2-butyl-

penyl)phosphite (van Leeuwen & Roobeek, 1983). All other

chemicals and solvents were obtained from Sigma–Aldrich and used

as received. [Rh(OX)(CO)2] was synthesized by mixing solutions of

8-hydroxyquinoline (50 mg, 0.344 mmol) in dimethylformamide

(DMF; 1 ml) and [RhCl(CO)2]2 (64 mg, 0.164 mmol) in DMF (1 ml).

Upon addition of ice–water (20 ml), the complex precipitated and

was filtered. Ligand substitution on the complex [Rh(OX)(CO)2] was

performed by dissolving a quantity (20 mg, 0.065 mmol) in acetone

(40 ml) followed by slow addition of P(OC8H9)3 (29 mg, 0.072 mmol)

in acetone (2 ml) (yield 33.5 mg, 76%). Spectroscopic analysis:
31P{H} NMR (CDCl3, 121.465 MHz, �, p.p.m.): 124.1 [1J(Rh—P) =

280 Hz]; IR (acetone): �(CO) 1976 cm�1; (KBr): �(CO) 1980 cm�1.
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Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids
are drawn at the 30% probability level. H atoms have been omitted for
clarity. For the phenyl C atoms, the first digit indicates the ring number
and the second digit indicates the position of the atom in the ring.

Figure 2
The unit-cell contents of (I) viewed along the a axis, indicating the �–�
stacking between the quinoline rings.



Crystal data

[Rh(C9H6NO)(C24H27O3P)(CO)]
Mr = 669.49
Triclinic, P1
a = 10.580 (2) Å
b = 10.944 (2) Å
c = 13.886 (3) Å
� = 83.49 (3)�

� = 75.25 (3)�

� = 88.58 (3)�

V = 1545.0 (5) Å3

Z = 2
Dx = 1.439 Mg m�3

Mo K� radiation
Cell parameters from 925

reflections
� = 5.5–45.9�

	 = 0.65 mm�1

T = 293 (2) K
Plate, yellow
0.36 � 0.12 � 0.07 mm

Data collection

Bruker SMART CCD 1K area-
detector diffractometer

! scans
Absorption correction: multi-scan

(SADABS; Bruker, 1998)
Tmin = 0.801, Tmax = 0.956

9255 measured reflections

6014 independent reflections
4122 reflections with I > 2�(I)
Rint = 0.030
�max = 26�

h = �12! 13
k = �13! 13
l = �17! 10

Refinement

Refinement on F 2

R[F 2 > 2�(F 2)] = 0.046
wR(F 2) = 0.097
S = 1.02
6014 reflections
385 parameters
H-atom parameters constrained

w = 1/[�2(Fo
2) + (0.0361P)2

+ 0.3605P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max < 0.001
�
max = 0.46 e Å�3

�
min = �0.34 e Å�3

Table 1
Selected geometric parameters (Å, �).

Rh—C10 1.805 (5)
Rh—O4 2.029 (3)
Rh—N 2.091 (3)
Rh—P 2.1982 (13)

P—O2 1.596 (3)
P—O3 1.597 (3)
P—O1 1.610 (3)
O5—C10 1.146 (5)

C10—Rh—N 97.11 (16)
O4—Rh—N 80.34 (13)
C10—Rh—P 90.31 (13)
O4—Rh—P 92.87 (8)

O2—P—Rh 118.07 (11)
O3—P—Rh 114.36 (10)
O1—P—Rh 117.80 (11)
O5—C10—Rh 177.6 (4)

O1—P—Rh—C10 �130.17 (18)
O2—P—Rh—C10 107.74 (18)

O3—P—Rh—C10 �6.13 (17)

Table 2
Comparative geometrical data (Å, �, Hz) for [Rh(OX)(CO)(PR3)]
complexes.

R Rh—P Rh—N Rh—O N—Rh—O �E
1JRh—P

O(2,6-DMP)a 2.198 (1) 2.091 (3) 2.029 (3) 80.3 (1) 183 280
OPhb 2.186 (1) 2.097 (2) 2.022 (2) 80.8† 154 281
Phc‡ 2.261 (2) 2.098 (9) 2.042 (5) 80.0 (3) 153 161
Phd 2.317 (2) 2.084 (7) 2.037 (4) 81.2 (2) 153 163

† Data extracted from the Cambridge Structural Database (Version 5.26; Allen, 2002);
no s.u. values available. ‡ RhIII iodomethane oxidative addition product containing
apical trans methyl and iodo ligands. References: (a) this work (2,6-DMP = 2,6-
dimethylphenyl); (b) Simanko et al. (2000); (c) Leipoldt et al. (1981); (d) van Aswegen et
al. (1991).

The H atoms were positioned geometrically and refined using a

riding model, with fixed C—H distances of 0.93 Å (CH) [Uiso(H) =

1.2Ueq] and 0.96 Å (CH3) [Uiso(H) = 1.5Ueq].

Data collection: SMART-NT (Bruker, 1998); cell refinement:

SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and

XPREP (Bruker, 1999); program(s) used to solve structure: SIR97

(Altomare et al., 1999); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND

(Brandenburg & Berndt, 2001); software used to prepare material for

publication: WinGX (Farrugia, 1999).
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